多倫多藍鳥-小昆凌
AI有望讓腫瘤細胞無處遁形 本報記者 李惠鈺 如果腫瘤細胞剛剛生成,就可以被精準地揪出來,那將給腫瘤的診斷和治療帶來巨大變革。而要想實現這一點,成像方式就必須具有極高的靈敏度。 近日,中科院自動化研究所、中科院分子影像重點實驗室在基于人工智能(AI)技術的新型成像方法研究上獲得了突破性進展——研究人員將小鼠顱內腦膠質瘤的三維定位精度,由傳統方法的百微米級誤差縮小到了十微米級,為疾病動物模型乃至臨床患者的影像學研究提供了全新的思路。相關研究論文已發表于《光》期刊。 圖像不是憑空得到的,而是成像設備獲得的,傳統方法往往不能提供最好的成像質量。在人類認知圖像之前,在成像信號轉化為圖像的過程中,會損失很多關鍵信息,人工智能技術可以突破這一瓶頸。論文第一作者、中科院自動化研究所副研究員王坤告訴《中國科學報》,通過建立新的AI模型,把原始的物理信號轉化為更加精確、更高分辨、更少偽影、更高信噪比的高質量圖像,無論是人腦還是機器腦,都可以更好地識別、認知和學習,這就是此項研究帶來的最本質的創新。 一項極具挑戰性的工作 腫瘤的早期發現並不容易,特別是某些惡性腫瘤,潛伏期甚至長達20年,當身體發出警報時,往往已經走到了中晚期。如何實現早期微小腫瘤的精準檢測,及時觀測到腫瘤細胞剛出現時產生的某些特異性蛋白、□甚至RNA,一直是科學家探索和研究的方向。 不過,在現實的物理世界中,能夠提供如此高靈敏度的成像媒介並不多。王坤坦言,目前公認最好的是高能伽馬射線和無輻射的光子,但是基于伽馬探測的放射性核素成像成本高,難以普及;光學成像成本低廉,但大都是二維圖像,缺乏三維信息。 我們用人工智能解決的就是光學成像難以三維定量的問題。王坤說,也就是既可以高靈敏度地看到有沒有腫瘤,是哪種分子類型的腫瘤,還可以高精確度地知道腫瘤在哪裡,有多大規模。 王坤提到的光學成像是指生物自發光斷層成像技術,該技術是生物醫學成像的重要手段,廣泛應用于疾病動物模型的影像學研究。然而,由于光子在生物體內具有非均勻化的高散射和高吸收的物理特性,通過探測動物體表的發光光斑來逆向重建出生物體內的光源位置(即腫瘤位置),是一項極具挑戰性的工作。 清華大學醫學院生物醫學工程系研究員羅建文告訴《中國科學報》,此前,